

Cody Dunne

Northeastern University

What is Visualization?

Feel free to interrupt with questions!

Plan for Today

- Discuss what visualization is \& why we care
- Get to know each other

Staff Introductions

Instructors

Cody Dunne

codydunne-and-tas@ccs.neu.edu, e.dunne@northeastern.edu
Office Hours: Tuesdays, 1-2pm on Khoury Office Hours
Fun Fact: I like pretty pictures that tell you something about data!

Library Visualization Specialist

Kate Kryder

codydunne-and-tas@ccs.neu.edu, k.kryder@northeastern.edu Office Hours: By appointment on Zoom (schedule here)

Fun Fact: Students who visit me often refer to the D3 Reusable Chart Model as the "Cody code."

Teaching Assistants

Dhruv Miyani

codydunne-and-tas@ccs.neu.edu, miyani.d@northeastern.edu
Office Hours: Wednesdays $12-3: 30 \mathrm{pm}$, location TBD

Evan Suslovich

codydunne-and-tas@ccs.neu.edu, suslovich.e@northeastern.edu Office Hours: Thursdays 1-4:30pm, location TBD

Sibi Thirukonda

codydunne-and-tas@ccs.neu.edu, thirukonda.s@northeastern.edu Office Hours: Fridays 6-8pm on Khoury Office Hours

What is visualization anyway?

(abstract or spatial)

(static or interactive)

$0 \circ$

visualization: the visual representation of data to reinforce human cognition

Florence Nightingale (c. 1858)

William Playfair (c. 1786)

Charles Minard (c. 1869) ,

Ptolemy (c. 150) 8

Florence Nightingale (c. 1858)

William Playfair (c. 1786)

Charles Minard (c. 1869) 9

Exports and tmports of SCOTLAND to and from diffezent parte for one Year from C'hriftuaa 1780 to Chriftmas 17^{8}

 WILIAM PLAYFAIR (c. 1786)

Florence Nightingale (c. 1858)

The 'lonight dirijicons are Tot Thouland Pourds each. The Black Lines are Expand de Ribbollion Amporte
William Playfair (c. 1786)

Charles Minard (c. 1869) ${ }_{11}$

DLACRAM OP xн CAUSGS or MOREADIMTY
in the ARMy in the EAST.
1.

APRIL 1854 то MARCH 1855.

The Areas of the blue, red, \& black wedges are each measured from the centre as the common vertex.
The blue wodges measured from the centre of the circle represent area for area the deaths from Preventible or Nitigable Zymotuc diseases; the red wedges measured from the centre the deaths from wounds; \& the black woedges measured from the centre the deaths from all other causes.
The black line across the red triangle in Noo. 1854 marles the boundary of the deaths from all other causes during the month.
In October 1854, \& Aprit 1855, the black area coincsides woth the red, in January \& February 1855, the blue coincides with the blact
The entire areas may be compared by following the blue, the red \& the black lines enclosing them

Florence Nightingale (c. 1858)

William Playfair (c. 1786)

Charles Minard (c. 1869) ${ }^{13}$

Carte Figurative des pentes successiwes en bommes del' (tumée Française daus la campagne de e Russie 1812 ~ 1813 .
 \{es nombres d'hommes présents som-représentés par les largenrs des zõnes colorées à zaison d'un millimëtre pour dix mille bommes; ils som- de plus écrits en travers

Charles Minard (c. 1869)

Florence Nightingale (c. 1858)

William Playfair (c. 1786)

Charles Minard (c. 1869) 15

computer graphics
visualization

computer graphics

visualization

statistics

computer graphics

visualization

psychology

art

statistics

Ok, but why do we need visualization?

CHALLENGES:

- Scalability
- Complexity reduction

GenBank

- Humans in-the-loop
G human cognition and memory is limited

qtfjnixigjunasbbtgr kclbvtxjxzxmxrgklx qhmzywteyjwno

qtfjnixigjunasbbtgr kclbvtxjxzxmxrgklx qhmzywteyjwno

qtfjnixigjunasbbtgr kclbvtxjxzxmxrgklx qhmzywteyjwno

qtfjnixigjunasbbtgr kclbvtxjxzxmxrgklx qhmzywteyjwno

"change blindness"

https://www.youtube.com/watch?v=FWSxSQsspiQ

The "Door" Study

from Simons \& Levin (1\%9s)

"change blindness"

https://www.youtube.com/watch?v=FWSxSQsspiQ

Again, why do we need visualization?

I	II		III		IV		
\mathbf{x}	\boldsymbol{y}	\boldsymbol{x}	\boldsymbol{y}	\mathbf{x}	\boldsymbol{y}	\mathbf{x}	\mathbf{y}
10.00	8.04	10.00	9.14	10.00	7.46	8.00	6.58
8.00	6.95	8.00	8.14	8.00	6.77	8.00	5.76
13.00	7.58	13.00	8.74	13.00	12.74	8.00	7.71
9.00	8.81	9.00	8.77	9.00	7.11	8.00	8.84
11.00	8.33	11.00	9.26	11.00	7.81	8.00	8.47
14.00	9.96	14.00	8.10	14.00	8.84	8.00	7.04
6.00	7.24	6.00	6.13	6.00	6.08	8.00	5.25
4.00	4.26	4.00	3.10	4.00	5.39	19.00	12.50
12.00	10.84	12.00	9.13	12.00	8.15	8.00	5.56
7.00	4.82	7.00	7.26	7.00	6.42	8.00	7.91
5.00	5.68	5.00	4.74	5.00	5.73	8.00	6.89

	Value	Equality
X Mean	9	$=$
Y Mean	7.50	.00
X Variance	11	$=$
Y Variance	4.12	.00
Correlation	0.816	.000
Linear regression line	$\mathrm{y}=3.00+0.500 \mathrm{x}$.00 and .000

There are three types of lies: lies, damned lies, and statistics

Unknown author, popularized by Mark Twain

Matejka \&Fitzmaurice, 2017

No catalogue of techniques can convey a willingness to look for what can be seen, whether or not anticipated. Yet this is at the heart of exploratory data analysis. ... the picture-examining eye is the best finder we have of the wholly unanticipated.

- Tukey, 1980

Matejka \&Fitzmaurice, 2017

Ok, but why do we need visualization?

Why visualize your data?

- Help cognition
- Expand memory
- Generate hypotheses
- Answer questions
- Make decisions
- Find patterns
- Record
- Clarify
- Communicate
- Inspire

In-class sketching - table tents
 20 min

neu-ds-4200-f23.github.io/in-class/table-tents/

Design Rules of Thumb

Design Rules of Thumb

1. Function first, form next

"Function first, form next

Gun deaths in Florida

Number of murders committed using firearms

Source: Florida Department of Law Enforcement

Gun deaths in Florida

Number of murders committed using firearms
1,00

Source: Florida Department of Law Enforcement

"Function first, form next

"Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data."

Design Rules of Thumb

1. Function first, form next
2. No unjustified 3D

"No Unjustified 3D"

http://help.infragistics.com/Help/Doc/WinForms/2014.2/CLR4.0/h tml/Images/Chart Bar Chart 03.png

http://img.brothersoft.com/screenshots/softimage/0/3d charts-171418-1269568478.jpeq

"No Unjustified 3D"

"No Unjustified 3D"

Design Rules of Thumb

1. Function first, form next
2. No unjustified 3D
3. No unjustified 2D

"No Unjustified 2D"

Task: What color is Delta?

"No Unjustified 2D"

Task: What color is Delta?

Node	Color
Alpha	White
Beta	Maroon
Delta	Purple
Epsilon	Teal
Eta	Mustard Yellow
Gamma	Orange
Theta	Pink
Zeta	

If the task doesn't need a 2D visualization, then don't use one.

Design Rules of Thumb

1. Function first, form next
2. No unjustified 3D
3. No unjustified 2D
4. Eyes beat memory

"Eyes Beat Memory"

Color
World Regions

Select
united states

United States

"Eyes Beat Memory"

Select
 united states

United States

"Eyes Beat Memory"

Color

Select united states

United States

Design Rules of Thumb

1. Function first, form next
2. No unjustified 3D
3. No unjustified 2D
4. Eyes beat memory

Edward Tufte

Tufte will be doing one of his one-day courses in Boston on Oct. 3, 4, 5 2023. \$240 for students includes these books. https://www.edwardtufte.com/tufte/courses

"Graphical Integrity"

"Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data."

(Axes and axis labels, titles, annotations, legends, etc.)

Interest Rates

"Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data."

Interest Rates

"Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data."

"Double the axes, double the mischief"

"Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data." http://www.thefunctionalart.com/2015/10/double-axes-double-

"Graphical Integrity"

"The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities measured."

Lie Factor

Lie Factor = (Size of effect in graphic) (Size of effect in data)

Lie Factor $=>1$, overstating
Lie Factor = 1, accurate :-)
Lie Factor $=<1$, understating

This line, representing 27.5 miles per
gallon in 1985 , is 5.3 inches long.
"The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities measured."

Lie Factor

Lie Factor $=\underline{(S i z e ~ o f ~ e f f e c t ~ i n ~ g r a p h i c) ~}$ (Size of effect in data)

This line, representing 27.5 miles per
gallon in 198 s , is 5.3 inches long.

$$
\text { Image }=\frac{5.3^{\prime \prime}-0.6^{\prime n}}{0.6^{n \prime \prime}}=7.83=783 \%
$$

$$
\text { Data }=\frac{27.5-18}{18}=0.53=53 \%
$$

$$
\text { Lie Factor }=\frac{783 \%}{53 \%}=14.8
$$

Lie Factor $=>1$, overstating

"The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities measured."

Lie Factor

Lie Factor $=\underline{(S i z e ~ o f ~ e f f e c t ~ i n ~ g r a p h i c) ~}$ (Size of effect in data)

$$
\text { Image }=\frac{5.3^{\prime \prime}-0.6^{\prime \prime}}{0.6^{0 \prime \prime}}=7.83=783 \%
$$

$$
\text { Data }=\frac{27.5-18}{18}=0.53=53 \%
$$

Lie Factor $=\frac{783 \%}{53 \%}=14.8$

Lie Factor $=>1$, overstating

"The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities measured."

$$
\text { Data }=\frac{2-1}{1}=1=100 \%
$$

Lie Factor $=\underline{(\text { Size of effect in graphic })}$
(Size of effect in data)

Image $=\frac{2-1}{1}=1=100 \%$
Lie Factor $=\frac{100 \%}{100 \%}=1$

Image $=\frac{2^{2}-1^{2}}{1^{2}}=3=300 \%$
Lie Factor $=\frac{300 \%}{100 \%}=3$

$$
\text { Image }=\frac{2^{*} \pi 1^{2}-1^{*} \pi 0.5^{2}}{1^{*} \pi 0.5^{2}}=7=700 \%
$$

Lie Factor $=\frac{700 \%}{100 \%}=7$
"The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities measured."

"Graphical Integrity"

"The number of information-carrying (variable) dimensions depicted should not exceed the number of dimensions in the data."

"Chart Junk"

"Chart Junk"

MONSTROUS COSTS
Total House and Senate campaign expenditures, in millions

"Chart Junk"

"Chart Junk Debate"

Useful Junk? The Effects of Visual Embellishment

 on Comprehension and Memorability of Charts

Benefitting InfoVis with Visual Difficulties

Hullman, et al. (2011)

An Evaluation of the Impact of Visual Embellishments in Bar Charts

An Empirical Study on Using Visual
Embellishments in Visualization

What makes a visualization memorable?

ISOTYPE Visualization - Working Memory, Performance, and Engagement with Pictographs

\cdots
Haroz, et al. (2015)

"Chart Junk"

Chart junk can... persuade, help with memorability, engage ... bias, limit data-ink ratio, clutter, lower trust Take-away: it depends on your audience, task, and context...

For Next Time

neu-ds-4200-f23.github.io/schedule/

Look at the upcoming assignments and deadlines

- Textbook, Readings, \& Reading Quizzes-Variable days
- In-Class Activities-If due, they are due 11:59pm the same day as class

Everyday Required Supplies:

- 5+ colors of pen or marker
- White paper
- Laptop and charger

Use Slack for general questions, email codydunne-andtas@ccs.neu.edu for questions specific to you.

Schedule

Please be sure to read the assigned reading before class.

Week 1: Introductions
Fri, Sep 08
What is Visualization

Week 2: Design \& Marks

Tue, Sep 12
Design rules of thumb
Required Readings:
1 VAD Chapter 1-What is Vis, and Why Do It?
2 VAD Chapter 6-Rules of Thumb

Fri, Sep 15

Marks and channels
Required Readings:
1 VAD Chapter 5-Marks and Channels
2 A Tour through the Visualization Zoo by Heer Bostock, and Ogievetsky (2012)

