

Cody Dunne Northeastern University

MARKS AND CHANNELS

CHECKING IN

THE NESTED MODEL FOR VISUALIZATION DEVELOPMENT

"Nested Model"

Domain situation L Observe target users using existing tools

Data/task abstraction

Visual encoding/interaction idiom Justify design with respect to alternatives

Algorithm WW Measure system time/memory Analyze computational complexity

Analyze results qualitatively Measure human time with lab experiment (*lab study*)

Observe target users after deployment (*field study*)

Measure adoption

Example

FAA (aviation)

What is the busiest time of day at Logan Airport?

Map vs. Scatter Plot vs. Bar

Nested Model

Human-centered design

Designer underständs user Abstract domain tasks

Visualization design

Implementation

Nested Model

Nested Model

TOP-DOWN *"problemdriven"*

Data/task abstraction Most difficult step!

Visual encoding/interaction idiom

Nested Model

Mistakes propagate through model!

Threats to Validity

Visual encoding/interaction idiom

Threats to Validity

MARKS AND CHANNELS

11

IN-CLASS EXERCISE

In-class brainstorming: building blocks 9m

- 1.
- 2.

Take 5 minutes to talk in groups of 4–5 and brainstorm what you think the building blocks to a visualization are.

Be prepared to share with the class.

- Learn the basic visual primitives of visualizations (marks and channels)
- Understand how marks and channels are assembled to make visualizations
- Learn which marks and channels are most effective for a given task ("perceptual ordering")

GOALS FOR TODAY

MARK = basic graphical element in an image

 \rightarrow Points

Visualization Building Blocks

Munzner, "Visualization Analysis and Design" (2014) 15

CHANNEL = way to control the appearance of marks, independent of the dimensionality of the geometric primitive

Visualization Building Blocks

Note: these are all really important concepts when it comes time to coding your visualizations...!

Visualization Building Blocks

Channels :

Visualization Building Blocks

MARK:

Visualization Building Blocks

Visualization Building Blocks

Visualization Building Blocks

Visualization Building Blocks

MARK:

Visualization Building Blocks

MARK:

Visualization Building Blocks

MARK:

Kindlmann (2004) + position in 3D space

CHANNEL:

25

Marks as Items/Nodes

Marks as Links

Containment

Visualization Building Blocks

Munzner, "Visualization Analysis and Design" (2014) 29

Marks as Links

- → Containment

Visualization Building Blocks

В 0 Α С 2 D

Note: these are all really important concepts when it comes time to coding your visualizations...!

Visualization Building Blocks

Channels :

How do I pick which marks or channels to use?

How to pick? User study results!

<u>Munzer, 2014</u> Cleveland & McGill, 1984 Heer & Bostock, 2010 Mackinlay, 1986 Panavas et al., 2022

In-class study—graphical perception

16 min <u>https://neu-ds-4200-f23.github.io/in-class/graphical-perception</u>

"Ordering of Elemental Perceptual Tasks"

Figure 1. Elementary perceptual tasks.

Cleveland & McGill (1984)

"Ordering of Elemental Perceptual Tasks"

Figure 3. Graphs from position-angle experiment.

TASK: Which segment/bar is the maximum, and what is its percentage/value?

Cleveland & McGill (1984), larger replication on AMT by <u>Heer & Bostock (2010)</u> ³⁶

Cleveland & McGill's Results

Heer & Bostock (2010) 43

Channels: Expressiveness Types and Effectiveness Ranks

Magnitude Channels: Ordered Attributes

More recent replications

The absolute error |Actual – Guessed| value for each task. Error bars represent 95% bias-corrected and accelerated (BCa) bootstrapped confidence intervals.

Rankings based on relative distances between most accurate and least accurate.

Panavas et al., 2022

Caveats

Individual Differences

The chart represent the variety of individual differences in the efficacy rankings of the studied visual encodings.

Expressiveness and Effectiveness

- Effectiveness principle: the importance of the attribute should match the salience of the channel; that is, its noticeability.

 - (i.e., encode most important attributes with highest ranked channels)
- Expressiveness principle: the visual encoding should express all of, and only, the information in the dataset attributes.
 - (i.e., data characteristics should match the channel) Mackinlay (1986)

My Summary: <u>Prioritize</u> choosing the most appropriate channel for each attribute

Expressiveness and Effectiveness

Figure 12: Correct Use of a Plot Chart for the Nation Relation. Since bar charts encode ordered domain sets, plot charts are conventionally used to encode nominal domain sets. The ordering of the labels on the axes is ignored.

Mackinlay (1986)

Expressiveness and Effectiveness

USA

Japan

Car Models Produced by Country (1979)

Audi 5000		
BMW 320i	Le Car	Saab 900
VW Dasher	Peugeot	Volvo 260
Germany Country	France	Sweden

IN-CLASS EXERCISE

3, 12, 42

3, 12, 42

- visualizations as you can of these three numbers.
- 2. No upload required
- discuss common themes.

In-class Sketching: "Three numbers" 20m

1. Individually (15m) use pens & post-it notes to sketch as many possible

3. As a class (5m) I will call on some of you to show your designs and

For Next Time

neu-ds-4200-f23.github.io/schedule/

Look at the upcoming assignments and deadlines

- Textbook, Readings, & Reading Quizzes—Variable days
- In-Class Activities—If due, they are due 11:59pm the same day as class

Everyday Required Supplies:

- 5+ colors of pen or marker
- White paper
- Laptop and charger

Use Slack for general questions, email <u>codydunne-and-</u> tas@ccs.neu.edu for questions specific to you.

Week 3: Data, Tasks, Tables, and Gestalt

Tue, Sep 19 <i>Data types and tasks</i> Required Readings:	Fri, Sep 22 Arrange tables Required Readings:	
1 VAD Chapter 2—What: Data Abstraction	1 VAD Chapter 7—Arrange Tables	
2 VAD Chapter 3—Why: Task Abstraction	2 Gestalt Principles (Part 1) by Bang Wong (2010)	
	3 Gestalt Principles (Part 2) by Bang Wong (2010)	
	A2—Encodings & xenographics Due at 11:59pm	
Week 4: Color, Pop-out, Illusions, Interaction, and Animation		
Tue, Sep 26 <i>Color, Pop-out, illusions</i> Required Readings:	Fri, Sep 29 Interaction and Animation Required Readings:	
1 VAD Chapter 10—Map Color and Other Channels	 VAD Chapter 11—Manipulate View VAD Chapter 12—Facet into Multiple Views 	

A3