

Cody Dunne Northeastern University

- ar

COLOR, ILLUSIONS

CHECKING IN

GOALS FOR TODAY: LEARN HOW...

- ...task analysis can lead to multiple designs
- ...to find visual idioms and ideas for inspiration.
- ...to effectively use color as a channel for visual encodings including different colormap types.
- ...individual color differences (i.e., colorblindness) should be accommodated in visualizations.
 - ...interactions can occur between colors and with lighting.
 - ...illusions and tricks can affect perception.

TASK ABSTRACTION \rightarrow VISUAL ENCODING

Analysis

- What data is shown? **DATA ABSTRACTION**
- Why is the user analyzing / viewing it? **TASK ABSTRACTION**
- How is the data presented? VISUAL ENCODING

Design

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Zhang et al., 2018

Design

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Design

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Design

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Zhang et al., 2018

Design

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

During a clinical visit ...

Task Abstraction

Design

<u>Zhang et al., 2018</u>

During a clinical visit ...

Dat	• L	34	***	Ant.		Diabetes			ook		
	1	Insukn Carl		a	1-	Lune	h	Bandar Insuize Carbo Gianom		-	
26.12	, [.	10	10		- and a	Carba	Glassee	Insults	Carba	Grana	Bedlime
26/26	t.				13	43	149	4.9	40	111	stands Carbs GA
	F	-	1	194	12	41	0	10			m
29027	<u>4</u> .2	1 11	1.	2	21	-+	-+	4	72	119	T
19,129	Į.p	3.6	1	49			265	4.4	**	2	TH.
8124	19	+-	+	4	Y	Y	~/.	10 1	H .	7	H
-+	-	10	1 11	•	15 / 41	-	P5 11	+	+	4	M
010	10	64	14		1 40	+-		1.	1	1	4
$n \mid i$,]	2.0	140	+	+	1'	60 01	50	1 -		1
les:	de			1 9	1	1 14	0 10	46	1	1-	141
	1.41	ning bei	iore by	esting a	ed.		_				

Task Abstraction

Design

<u>Zhang et al., 2018</u>

During a clinical visit ...

	Day		3	iresk:	ant.		Diabotes Lobook									
			Inmakn	Carto	ann	1	Lunch			Blanker Insulta Carbo GRanow						
-1	4,12	, [24		-	100000	Carbs	Ofacial	Inesite	land			Bedila	iie -		
ŀ		+	<u> </u>		164.	1 13	43	44.4			Gracow	Involte	Carbo	alan		
1	<i>16/16</i>	1		24	184				4,3	10	m /	2	0			
Ľ		+		-		10	41	2	40	24		Y		_		
Ľ	16029	14	• / •	= l.	0	21	-+		-	~	10	1	1			
1	6/28	1.	+		4		4	245	10 1	22	A	-	4			
	_	0	1.	•	143	2D	1	=1		1	2	Y	\rightarrow	- 71		
14	m	1.1	10	+	+	4	T	-1	9.9 / 1	- 11	21.	VI.	7			
-	+	_	1.	1'	** / .	15 / 01	- []	ES .	1	+		1		\sim		
24,0)	0 / 1	¢,	1 4	n		-		-	. 4	1.	-	1		-		
Maria	1			1	1	1 +0	1.	6 0	1 50	1	+-	+	1	-1		
M/11	11	1	1 - 1 .		11	47	++-		1-	1-	1	1-		7		
lote	<i>a</i> -	de					14	0/ 10	46	2.0			1-	1		
_			ering w	etars is	esdang as	ed.		_					1	·/		

Task Abstraction

<u>Zhang et al., 2018</u>

During a clinical visit ...

	Day		3	iresk:	ant.		Diabotes Lobook									
			Inmakn	Carto	ann	1	Lunch			Blanker Insulta Carbo GRanow						
-1	4,12	, [24		-	100000	Carbs	Ofacial	Inesite	land			Bedila	iie -		
ŀ		+	<u> </u>		164.	1 13	43	44.4			Gracow	Involte	Carbo	alan		
1	<i>16/16</i>	1		24	184				4,3	10	m /	2	-			
Ľ		+		-		10	41	2	40	24		Y		_		
Ľ	16029	14	• / •	= l.	0	21	-+		-	~	10	1	1			
1	6/28	1.	+		4		4	245	10 1	22	A	-	4			
	_	0	1.	•	143	2D	1	=1		1	2	Y	\rightarrow	- 71		
14	m	1.1	10	+	+	4	T	-1	9.9 / 1	- 11	21.	VI.	7			
-	+	_	1.	1'	** / .	15 / 01	- []	ES .	1	+		1		\sim		
24,0)	• [•	¢,	1 4	n		-		-	. 4	1.	-	1		-		
Maria	1			1	1	1 +0	1.	6 0	1 50	1	+-	+	1	-1		
M/11	11	1	1 - 1 .		11	47	++-		1-	1-	1	1-		7		
lote	<i>a</i> -	de					14	0/ 10	46	2.0			1-	1		
_			ering w	etare is	esdang as	ed.		_					1	·/		

Task Abstraction

Zhang et al., 2018 ¹⁴

0.

Develop a treatment plan and educate patients

Zhang et al., 2018 ¹⁵

0.

Develop a treatment plan and educate patients

Design Requirements

- DR1. Composite Visualization of Integrated Data
- DR2. Visualization of **Folded Temporal** Data
- DR3. Align and Scale Temporal Data
- DR4. Summary Statistics

14-Day Overview

Detail View

Task Abstraction

Design

Summary **Statistics** Panel

Zhang et al., 2018¹⁸

Di Bartolomeo et al., 2020¹⁹

Fig. 9: Results of our evaluation comparing SEQUENCE BRAIDING vs. IDMVis [63]. (A) Completion time and correctness per task. Each row corresponds to the task at left, which is classified based on Andrienko & Andrienko [3]. The specific question instantiating that task for the study is in the second column. (B) Participants' Likert scale responses regarding confidence and ease of use. (C) Participants' answers when asked what other types of data would they use with SEQUENCE BRAIDING. D Participants' reported strategies used. E Participants' preference for which method was most useful for displaying trends. (F) Error magnitude per task, for those which are quantifiable.

Task Abstraction

Design

Di Bartolomeo et al., 2020²⁰

Task Abstraction

<u>Di Bartolomeo et al., 20</u>20²¹

Interview Advice

- Have a designated note-taker and designated leader
- Be prepared. (Have some questions prepared in advance.)
- Start slow, safe, and personal.
- Coax, don't hammer.
- Make some questions open ended.
- Ask what you don't know.
- Let the interviewees wander a bit-but be careful.
- Listen, really listen.
- For software, look for "work arounds" and hacks.
- Make sure to write down your thoughts and impressions immediately after the interview.
- You are the visualization expert don't ask them what vis they want, don't think too early about what vis to build.

VISUALIZATION IDEAS

http://massvis.mit.edu/

Borkin, M., Vo, A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H., 2013, "What Makes a Visualization Memorable?", IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis 2013), 19, 12, 2306-2315.

Visualization Taxonomy

In order to address the variety of visualization types in the MassVis database, we created a taxonomy for static (i.e., non-interactive) visualizations. The taxonomy classifies static visualizations according to the underlying data structures, the visual encoding of the data, and the perceptual tasks enabled by these encodings. It contains twelve visualization categories and several popular subtypes for each category. In addition, we supply a set of properties , and we continue to use this For more information about the taxonomy, please read this document:

If you use this taxonomy, please cite this paper: 🕢

word	1	ABC	1234	X45	Canada	Y↑
word		Category	543.2109	7%		
word	****	Group	45.67	45%	United States of America	
ord		Unit	9876	98%	Shorth America	

More visualization "catalogs"

Data to Viz

https://www.data-to-viz.com/

What kind of data do you have? Pick the main type using the buttons below. Then let the decision tree guide you toward your graphic possibilities.

More visualization "catalogs"

DataVizProject

http://datavizproject.com/

http://www.datavizcatalogue.com/

More visualization ideas

https://matplotlib.org/gallery.html

https://github.com/d3/d3/wiki/Gallery

https://plot.ly/python/

Library

Plotly's Python graphing library makes interactive, publication-quality graphs online. Examples of how to make line plots, scatter plots, area charts, bar charts, error bars, box plots, histograms, heatmaps, subplots, multipleaxes, polar charts, and bubble charts.

Search

Search Plotly's Python Docs

Plotly Fundamentals 🖉

Basic Charts @

Plotly Python Open Source Graphing

COLOR

Visual Perception and Cognition

Pre-Attentive Processing

- Automatic
- Lasts < 1 second

Working Memory / Short-Term Memory

• Conscious • Limited (information retained for seconds)

Long-Term Memory

• Storage of repeated working memory tasks • Can be consciously retrieved

Color = Wavelength

Paschos & Bentley, 2019 30

Wavelength \rightarrow Signals

trichromacy = possessing three independent channels for conveying color information

RODS & CONES

http://i.stack.imgur.com/wlbcE.jpg Dubuc, 2002 32

Wavelength (nm)

VARIABLE ACTIVATION

Medium Long \mathbf{T} 600 700 Red

This is why darkness (lightness) is an effective encoding channel!

Rods:120 million **Cones: 5-6 million**

Cones:

This is why we are so sensitive to red!

64% red-sensitive

32% green-sensitive

2% blue-sensitive.

<u>Witcombe, 2014</u> 33

Modeling Color with RGB

Modeling Color with RGB

Simmon, 2014 ³⁶

Color Vocabulary and Perceptual Ordering

Darkness (Lightness)

Saturation

Hue

Based on Slides by Miriah Meyer, Tamara Munzner ³⁷

Modeling Color with HSL or HSV

Still Imperfect

Wikimedia 38

"...avoiding catastrophe becomes the first principle in bringing color

to information: above all, do no harm." -Edward Tufte

Tufte, "Envisioning Information"

Color Maps Color Map = map between value (domain) and color (range)

gist_earth	Blues	BrBG
terrain	Greens	PRGn
ocean	Greys	Piyg
gist_stern	Oranges	PuOr
brg	Purples	RdBu
CMRmap cubehelix	Reds	RdGy
gnuplot	BuPu	RdYIBu
gnuplot2	GnBu	RdYIGn
gist_ncar	OrRd	Spectral
nipy_spectral	PuBuGn	Rainbow
jet	PuBu	Sinebow
rainbow	PuRd	
gist_rainbow	RdPu	Catego <mark>ry10</mark>
hsv		Accent
flag		Dark2
prism	YIGn	Pa <mark>ired and an and an </mark>
	YlOrBr	Pastel1
	YIOrRd	Pastel2
	Cividis	Se <mark>t1 Se</mark> t1
	Viridis	Se <mark>t2</mark>
	Inferno	Set3
	Magma	Tableau10 Tableau10
	Plasma	
	Warm	
	Cool	
	CubehelixDefault	
	Turbo	

Bostock, 2018

<u>matplotlib</u>

Encode > Map

VAD Chapter 10 41

THREE MAIN TYPES:

Categorical

(categorical/nominal data)

Sequential

Diverging

Percent of population under 18 by state 28.0 to 32.2 25.7 to 27.9 Critical Value - Nat'1 Avg 24.0 to 25.6 20.1 to 23.9

(quantitative data)

- Does not imply magnitude differences
- Distinct hues with similar emphasis
- Best for ordered data that progresses from low to high (ordinal, quantitative data)
- Darkness (lightness) channel effectively employed
- For data with a "diverging" (mid) point
- Equal emphasis on mid-range critical values and extremes at both ends of the data range

ALSO... **Bivariate**

Displays two variables

- Combination of two sequential color schemes
- These are very difficult to design effectively, make intelligible, and be color blind friendly.

Sequential (single hue)

Sequential (multiple hue)

		•	/	
BuGn				
BuPu				
GnBu				
OrRd				
PuBuGn				
PuBu				
PuRd				
RdPu				
YIGnBu				
YIGn				
YlOrBr				
YlOrRd				
Cividis				
Viridis				
Inferno				
Magma				
Plasma				
Warm				
Cool				
CubehelixDefault				
Turbo				

Types of Color Maps

- No edges without darkness difference
- No shading without darkness variation
- Has higher spatial sensitivity than color channels
- Contrast defines legibility, attention, layering
- Controlling darkness is primary rule of design

Based on Slide by Hanpseter Pfister 45

"Get it right in black and white." -Maureen Stone

Understanding your medium matters

OTTE and OJCIK

vou're a little bit little bit rockin', a pin', or a little bit et you were a big ar's homecoming new it definitely at. (Yay, puns!) people would is their forte, I gree the music oming was a eon is in treay, no more

ning in our noment to

omecommaking you r the dequack up, let's v we're this discuss Don music year's ns are themes! best! Almost 42 tried of percent who those who angifs swered our survey said that their favorite out of the four was pop, making it the most popular of the themes, with

Figure 8: Maximum wave amplitudes for the Japan 2011 tsunami. Amplitudes were clipped at 99cm. Data adapted from NOAA; http://www.noaa.gov/.

FatFonts

Nacenta et al., 2012 49

Rainbow Color Map (Hue)

Rainbow Color Map

(b)

Rainbow Color Map

- No darkness variation (obscures details)
- data, even when this is not the case (misleading)

Viewers perceive sharp transitions in color as sharp transitions in the

Rainbow Color Map (Hue) No perceptual ordering (confusing)

Borland & Russell, 2007 54

Rainbow Color Map

Rainbow: 3D: 39% 2D: 62%

How many diseased regions found?

Diverging: 3D: 71% (Δ +31%) 2D: 91% (Δ +29%)

39% Diseased Regions Found

"Get it right in black and white."

"Get it right in black and white."

91% Diseased Regions Found

"Get it right in black and white."

"Get it right in black and white."

"Get it right in black and white." How Much Warmer Was Your City in 2016?

Last year is the hottest year on record for the third consecutive year. In a database of more than 5,000 cities provided by AccuWeather, about 90 percent recorded annual mean temperatures higher than normal. Enter your city below to see how much warmer (or cooler) it was.

Cumulative monthly precipitation, in inches, compared with normal. Precipitation totals are rainfall plus the liquid equivalent of any frozen precipitation.

By K.K. REBECCA LAI JAN. 18, 2017

<u>NY Times, 2017</u>

"Get it right in black and white." How Much Warmer Was Your City in 2016?

Last year is the hottest year on record for the third consecutive year. In a database of more than 5,000 cities provided by AccuWeather, about 90 percent recorded annual mean temperatures higher than normal. Enter your city below to see how much warmer (or cooler) it was.

Cumulative monthly precipitation, in inches, compared with normal. Precipitation totals are rainfall plus the liquid equivalent of any frozen precipitation.

By K.K. REBECCA LAI JAN. 18, 2017

<u>NY Times, 2017</u>

"Get it right in black and white."

Ocean Ice Melt

Land

Atmosphere

100 zettajoules

1980

"Get it right in black and white."

Why this color map is a poor choice for quantitative data... No perceptual ordering (confusing) No darkness variation (obscures details) Viewers perceive sharp transitions in color as sharp transitions in the data, even when this is not the

- case (misleading)

Rogowitz & Treinish, 1996 65

Rogowitz & Treinish, 1996 66

Sequential (possibly wrong)

Sequential rainbow (wrong!)

Diverging

Rogowitz & Treinish, 1996 67

IN-CLASS EXERCISE

In-class exercise: Oilslick 10m

INSTRUCTIONS:

- Experiment with the different layers, different zoom levels, and different locations
- Think of answers to these questions: What areas are particularly interesting? Which layer / color scale works best, and for which tasks?
- Several of you will be asked to share your findings.

71

Working individually, go to <u>https://mrgris.com/projects/oilslick/</u>

Those with deuteranope color blindness (red/green) will have difficulty seeing the numbers.

Color Deficiencies (Color Blindness)

Person with faulty cones (or faulty pathways):

Protanope = faulty red cones

Deuteranope = *faulty green cones*

Tritanope = *faulty blue cones*

normal

Based on Slides by Hanspeter Pfister, Maureen Stone 73

Color Deficiencies (Color Blindness)

Normal

Protanope

Based on Slides by Hanspeter Pfister, Maureen Stone 74

Check your images/colormaps for issues!

Vischeck

Home

Vischeck •Run Images Run Webpages

Daltonize

Examples

Downloads

Info & Links

FAQ

About Us

Try Vischeck on Your Image Files

Select the type of color vision to simulate:

Deuteranope (a form of red/green color deficit)

Protanope (another form of red/green color deficit)

Tritanope (a blue/yellow deficit- very rare)

Image file: Choose File No file chosen

Run Vischeck!

Notes:

- Vischeck accepts most common image formats. However, we recommend that you use PNG or JPEG format for uploading large images as these tend to transfer faster.
- For PowerPoint slides, you can save all your slides as PNG images with "Save As..." and run Vischeck on each slide.
- If you have many images to process, consider downloading Vischeck to run on your own computer.)
- Uploading a large file may take a while please be patient!

Please read our terms of use before using Vischeck.

http://www.vischeck.com/vischeck/vischeckImage.php https://www.color-blindness.com/coblis-color-blindness-simulator/

Home
VD Essentials
Color Blindness Tests
Color Tools Contact

Coblis — **Color Blindness Simulator**

If you are not suffering from a color vision deficiency it is very hard to imagine how it looks like to be colorblind. The Color BLIndness Simulator can close this gap for you. Just play around with it and get a feeling of how it is to have a color vision handicap.

As all the calculations are made on your local machine, no images are uploaded to the server. Therefore you can use images as big as you like, there are no restrictions. Be aware, there are some issues for the "Lens feature" on Edge and Internet Explorer. All others should support everything just fine.

So go ahead, choose an image through the upload functionality or just drag and drop your image in the center of our Color BLIndness Simulator. It is also possible to zoom and move your images around using your mouse - try it out, I hope you like it.

Drag and drop or	paste your file in the area belo	OW OT: Browse No file selected	e <mark>d.</mark>
Trichromatic view:	Anomalous Trichromacy:	Dichromatic view:	Monochron
 Normal 	 Red-Weak/Protanomaly Green-Weak/Deuteranomaly Blue-Weak/Tritanomaly 	 ○ Red-Blind/Protanopia ○ Green-Blind/Deuteranopia ○ Blue-Blind/Tritanopia 	O Monoch O Blue Co
Use lens to compa Reset View	are with normal view: No Lens 	ONormal Lens OInverse Len	s
the second second	are with normal view: No Lens 	○ Normal Lens ○ Inverse Len	s

INTERACTIONS BETWEEN COLORS AND WITH LIGHTING

"Lightness Constancy"

The perception that the apparent brightness of light and dark surfaces remains more or less the same under different luminance conditions is called **darkness (lightness) constancy**.

This is the same gray as the center of the O in OFF

This is the same gray as the top part of the S in GLOVES

"Color Constancy"

Lotto, 2009 79

Avoid gradients as backgrounds or bars!

Be careful with bars and scatter plot points - the colors may appear differently with different background colors and neighboring colors!

Be aware that colors in legends may appear different than on the plot!

Griffin, 2015 94

"von Bezold Spreading Effect"

1	

"von Bezold Spreading Effect"

Be careful with colors in scatter plots! Be aware of color changes when adding borders around bars and plots! Be aware that colors in legends may appear different than on the plot!

Which area is larger (green or red)?

Cleveland & McGill, 1983⁹⁷

Which area is larger?

Areas are equal(!).

Study participants favored red in the highly saturated case (left) but were more correct with the desaturated case (right)

Figure 2. Stimulus From the Low-Saturation Group Cleveland & McGill, 1983

POP-OUT EFFECTS

Healey, 2012 99

A quarterback sneak is a play in American football and Canadian football in which the quarterback, upon taking the center snap, dives ahead while the offensive line surges forward. It is usually only used in very short yardage situations.

https://en.wikipedia.org/wiki/Quarterback_sn eak

Which pop-out effects are used in this example visualization?

The Patriots' QB sneaks stand out

QB sneak success rate versus number of attempts on 1- and 2-yard plays on third and fourth down, 2001-15

FiveThirtyEight

Number of sneak attempts

SOURCE: ARMCHAIR ANALYSIS

Davis & Lopez, 2017 100

Desaturated background, light blue

NASA/ESA/Hubble Heritage Team (STScI/AURA) / Hester & Scowen

101

For Next Time

neu-ds-4200-f23.github.io/schedule/

Look at the upcoming assignments and deadlines

- Textbook, Readings, & Reading Quizzes—Variable days
- In-Class Activities—If due, they are due 11:59pm the same day as class

Everyday Required Supplies:

- 5+ colors of pen or marker
- White paper
- Laptop and charger

Use Slack for general questions, email <u>codydunne-and-</u> <u>tas@ccs.neu.edu</u> for questions specific to you.

Week 5: Reduce and Embed; Spatial, 3D, and SciVis				
Tue, Oct 03	Fri, Oct 06			
Reduce and Embed	Spatial, 3D, and scientific visualization			
Required Readings:	Required Readings:			
1 VAD Chapter 13—Reduce Items and Attributes	1 VAD Chapter 8—Arrange Spatial Data			
2 VAD Chapter 14—Embed: Focus + Context	4—Altair basic charts due at 11:59pm			
Week 6: Networks and Trees, validation and evaluation				

Т	ue, Oct 10	Fri, Oct 13	
Networks and Trees		Validation and evaluation	
Required Readings:		Required Readings:	
1	VAD Chapter 9—Arrange Networks and Trees	1 VAD Chapter 4—Analysis: Four Levels for Va	
		A5	

