

Cody Dunne

Northeastern University

Color, ILlusions

CHECKING IN

Goals for Today: Learn How...

- ...task analysis can lead to multiple designs
- ...to find visual idioms and ideas for inspiration.
- ...to effectively use color as a channel for visual encodings including different colormap types.
- ...individual color differences (i.e., colorblindness) should be accommodated in visualizations.
- ...interactions can occur between colors and with lighting.
- ...illusions and tricks can affect perception.

TASK AbSTRACTION \rightarrow VISUAL Encoding

Analysis

What?

Why?

How?

What data is shown?
Data Abstraction
Why is the user analyzing / viewing it? TAsk Abstraction

How is the data presented?
Visual Encoding

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Imagine a 10-year-old kid, who has been diagnosed with type 1 diabetes...

Diabetes Logbook

Sickness

Insulin
Injection

Continuous
Glucose Monitor (CGM)

During a clinical visit ...

Design Requirements
-DR1. Composite Visualization of Integrated Data

- DR2. Visualization of Folded Temporal Data
- DR3. Align and Scale Temporal Data
- DR4. Summary Statistics

Hierarchical Task Analysis

Fig. 9: Results of our evaluation comparing SEQUENCE BRAIDING vs. IDMVis [63]. © Completion time and correctness per task. Each row
corresponds to the task at left, which is lissifited based on Andrienko \& Andrienko [3]. The specific uestion instantiating that ask for the sudy
corresponds to the task at left, which is classified based on Andrienko \& Andrienko [3]. The specific question instantiating that task for the study
is in the second column. (B) Participants’' Likert scale responses regarding confidence and ease of use. © Participants' answers when asked what
other types of data would they use with Sequevce BraIING. © Participants' reported strategies used. © Participants' preference for which method was most useful for displaying trends. (©) Error magnitude per task, for those which are quantifiable.

completion time	
mean (s)	mean ratio In(SeqBr/IDMVis)
The average time spent answering each question, in seconds.	Estimates of per participant effect size on timing, calculated as the natural logarithm of SeqBr/IDMVis.

proportion of correct responses

The amount of correct
responses. 1.0 would mean that all the questions
have been answered correctly. have been answered correctly.

proportion difference IDMVis - SeqBr
Estimates of per participant effect size on correctness.
calculated as IDMVis-SeqBr.

Interview Advice

- Have a designated note-taker and designated leader
- Be prepared. (Have some questions prepared in advance.)
- Start slow, safe, and personal.
- Coax, don't hammer.
- Make some questions open ended.
- Ask what you don't know.
- Let the interviewees wander a bit-but be careful.
- Listen, really listen.
- For software, look for "work arounds" and hacks.
- Make sure to write down your thoughts and impressions immediately after the interview.
- You are the visualization expert - don't ask them what vis they want, don't think too early about what vis to build.

Visualization Ideas

Borkin, M., Vo, A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., \& Pfister, H., 2013 "What Makes a Visualization Memorable?", IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis 2013), 19, 12, 2306-2315.

More visualization "catalogs"

More visualization "catalogs"

DataVizProject http://datavizproject.com/

Sankey Diagram

Alluvial Diagram

Donut Chart

Matrix Diagram

$$
\begin{array}{|c|c|c|c|}
\cline { 2 - 4 } & 1 & \mathbf{2} & 3 \\
\hline \text { A } & \bullet & & \bullet \\
\hline \mathbf{B} & & 0 & \bullet \\
\hline \mathbf{C} & 0 & & \\
\hline
\end{array}
$$

Pictorial fraction chart

Matrix Diagram (Roof Shaped)

A
C
C

Sorted Stream Graph

Flow Map

The Data Visualization Catalogue
http://www.datavizcatalogue.com/

More visualization ideas

matpltlib

Color

Visual Perception and Cognition

Pre-Attentive Processing

- Automatic
- Lasts < 1 second

Working Memory / Short-Term Memory
 - Conscious
 - Limited (information retained for seconds)

Height of students

Long-Term Memory

- Storage of repeated working memory tasks
- Can be consciously retrieved

Color = Wavelength

Wavelength \rightarrow Signals

Rods \& Cones

Variable Activation

Wavelength (nm)

This is why darkness (lightness) is an effective encoding channel!

Rods:120 million
Cones: 5-6 million

Cones: $\begin{aligned} & \text { This is why we are so } \\ & \text { sensitive to red! }\end{aligned}$ 64\% red-sensitive 32\% green-sensitive 2\% blue-sensitive.

Modeling Color with RGB

Modeling Color with RGB

Modeling Color with RGB: Problematic

Color Vocabulary and Perceptual Ordering

Darkness (Lightness)

 \square \square

 Saturation $\square \square \square \square$ Hue

Modeling Color with HSL or HSV

HSL

C. $L=1 / 2 d$
d. $H=0^{\circ} / 180^{\circ}$

Still Imperfect

"...avoiding catastrophe becomes the first principle in bringing color to information: above all, do no harm." -Edward Tufte

Color Maps

Color Map = map between value (domain) and color (range)

Three Main Types:

Color Maps

Categorical Does not imply magnitude differences

Race or ethnicity Hispanic White Black Asian

Sequential
People per sq. mile 300.00 to 9316.0 79.6 to 299.9 79.6 to 299.9
7.0 to 79.5 1.1 to 6.9

Diverging
Percent of population under 18 by state 28.0 to 32.2 $\square 25.7$ to 27.9 Critical Value - Nat'1 Avg. $\square 24.0$ to 25.6 20.1 to 23.9 (categorical/nominal data)

Distinct hues with similar emphasis
Best for ordered data that progresses from low to high (ordinal, quantitative data)

Darkness (lightness) channel effectively employed
For data with a "diverging" (mid) point (quantitative data)
Equal emphasis on mid-range critical values and extremes at both ends of the data range

Color Maps

ALSO...

Bivariate
Displays two variables
Combination of two sequential color schemes
These are very difficult to design effectively, make intelligible, and be color blind friendly.

Types of Color Maps

Diverging

Categorical

Pastel1
Fastel2

Sen \square

[riman la

Cyclical

Rainbow

Sinebow

Darkness (Lightness) Channel

- No edges without darkness difference
- No shading without darkness variation
- Has higher spatial sensitivity than color channels
- Contrast defines legibility, attention, layering
- Controlling darkness is primary rule of design

"Get it right in black and white."

-Maureen Stone

Understanding your medium matters

mecoming music themes were rock

Figure 8: Maximum wave amplitudes for the Japan 2011 tsunami. Amplitudes were clipped at 99 cm . Data adapted from NOAA; http://www.noaa.gov/.

FatFonts

Rainbow Color Map (Hue)

Rainbow Color Map
(a)
(b)

Rainbow Color Map

- No darkness variation (obscures details)
- Viewers perceive sharp transitions in color as sharp transitions in the data, even when this is not the case (misleading)

Rainbow Color Map (Hue)

No perceptual ordering (confusing)

(a)

Rainbow Color Map

Rainbow:
3D: 39\%
2D: 62\%

How many diseased regions found?

Diverging:
3D: 71\% ($\Delta+31 \%$)
2D: 91\% ($\Delta+29 \%)$

"Get it right in black and white."

"Get it right in black and white."

"Get it right in black and white."

91\% Diseased Regions Found

"Get it right in black and white."

"Get it right in black and white."

How Much Warmer Was Your City in 2016?
by K.K. rebecca lat Jan. 18, 2017
Last year is the hottest year on record for the third consecutive year
In a database of more than 5,000 cities provided by AccuWeather,
normal. Enter your city below to see how much warmer (or cooler) it was.

Temperature Average: $53.4^{\circ} \triangle \mathbf{1 . 9}{ }^{\circ}$ above normal | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- |

"Get it right in black and white."

How Much Warmer Was Your City in 2016?
By K.к. Rebecca lal Jan. 18, 2017
Last year is the hottest year on record for the third consecutive year
about 90 percent recorded annual mean temperatures higher than
normal. Enter your city below to see how much warmer (or cooler) it was.
Boston, Mass.
Temperature Average: $53.4^{\circ} \Delta \mathbf{1 . 9}{ }^{\circ}$ above normal

"Get it right in black and white."

Estimated Heat Accumulation

100 zettajoules

1	1	1	1
1980	1990	2000	2010

"Get it right in black and white."

Estimated Heat Accumulation

100 zettajoules

1	1	1	1
1980	1990	2000	2010

Rainbow Color Map (Hue)

Why this color map is a poor choice for quantitative data...

- No perceptual ordering (confusing)
- No darkness variation (obscures details)
- Viewers perceive sharp transitions in color as sharp transitions in the data, even when this is not the case (misleading)

Color Maps

Color Maps

Color Maps

Sequential (possibly wrong)
Diverging

Roos, 2015

In-CLASS EXERCISE

In-class exercise: Oilslick

 10 m
INSTRUCTIONS:

- Working individually, go to https://mrgris.com/projects/oilslick/
- Experiment with the different layers, different zoom levels, and different locations

- Think of answers to these questions:

What areas are particularly interesting?
Which layer / color scale works best, and for which tasks?

- Several of you will be asked to share your findings.

Those with deuteranope color blindness (red/green) will have difficulty seeing the numbers.

Color Deficiencies (Color Blindness)

Person with faulty cones (or faulty pathways):
Protanope = faulty red cones

Deuteranope = faulty green cones

normal

Tritanope = faulty blue cones

Color Deficiencies (Color Blindness)

Normal

Protanope

Deuteranope

Check your images/colormaps for issues!

Vischeck

Home	
Vischeck	Try Vischeck on Your Image Files
-Run Images -Run Webpages	Select the type of color vision to simulate:
Daltonize	
Examples $\quad 1 \mathrm{ll}$ O Deuteranope (a form of red/green color deficit)	
Downloads Protanope (another form of red/green color deficit)	
Info \& Links	
FAQ Sliv Tritanope (a blue/yellow deficit- very	
About Us	
User quotes: Fantastic! Keep up the good work!!! -Zoe N.	Notes:
Web - Vischeck Google Search	- Vischeck accepts most common image formats. However, we recommend that you use PNG or JPEG format for uploading large images as these tend to transfer faster. - For PowerPoint slides, you can save all your slides as PNG images with "Save As..." and run Vischeck on each slide. - If you have many images to process, consider downloading Vischeck to run on your own computer.) - Uploading a large file may take a while - please be patient!
	Please read our terms of use before using Vischeck.

Coblis -
Color Blindness Simulator
you are not suffering from a color vision deficiency it is very hard to imagine how it toi If you are not suffering from a color vision deficiency it is very hard to o magine how it tlook
like to be colorblind. The Color BLIndness Simulator can close this gap for you. Just play like to be colorblind. The Color BLIndness Simulator can close this gap for yo
around with it and get a feeling of how it is to have a color vision handicap.

As all the calculations are made on your local machine, no images are uploaded to the server. Therefore you can use images as big as you like, there are no restrictions. Be awa there are some issues for the "Lens feature" on Edge and Internet Explorer. All others should support everything just fine.

So go ahead, choose an image through the upload functionality or just drag and drop your
image in the center of our Color BLIndness Simulator. It is also possible to zoom and move your images around using your mouse - try it out, I hope you like it.

Drag and drop or paste your file in the area below or: Browse... No file selected. FREE Color Blind
 and test type and
severity of your color severity of your cy

Interactions between Colors AND WITH LIGHTING

"Lightness Constancy"

The perception that the apparent brightness of light and dark surfaces remains more or less the same under different luminance conditions is called darkness (lightness) constancy.

This is the same gray as the top part of the S in Gloves
"Darkness (lightness) Constancy"

"Color

Constancy"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

Be careful with bars and scatter plot points - the colors may appear differently with different background colors and neighboring colors!

Be aware that colors in legends may appear different than on the plot!

"Simultaneous Contrast"

"von Bezold Spreading Effect"

"von Bezold Spreading Effect"

[^0]Which area is larger (green or red)?

Which area is larger?

Areas are equal(!).
Study participants favored red in the highly saturated case (left) but were more correct with the desaturated case (right)

Pop-Out Effects

Color

A quarterback sneak is a play in American football and Canadian football in which the quarterback, upon taking the center snap, dives ahead while the offensive line surges forward. It is usually only used in very short yardage situations.
https://en.wikipedia.org/wiki/Quarterback sn eak

Which pop-out effects are used in this example visualization?

The Patriots' QB sneaks stand out

QB sneak success rate versus number of attempts on 1 - and 2-yard plays on third and fourth down, 2001-15

Desaturated background, light blue

For Next Time

neu-ds-4200-f23.github.io/schedule/

Look at the upcoming assignments and deadlines

- Textbook, Readings, \& Reading Quizzes-Variable days
- In-Class Activities-If due, they are due 11:59pm the same day as class

Everyday Required Supplies:

- 5+ colors of pen or marker
- White paper
- Laptop and charger

Use Slack for general questions, email codydunne-andtas@ccs.neu.edu for questions specific to you.

Week 5: Reduce and Embed; Spatial, 3D, and SciVis

Tue, Oct 03

VAD Chapter 13—Reduce Items and Attributes
VAD Chapter 14—Embed: Focus + Context

Fri, Oct 06

Spatial, 3D, and scientific visualization
Required Readings:
1 VAD Chapter 8-Arrange Spatial Data
4-Altair basic charts due at $11: 59 \mathrm{pm}$
Week 6: Networks and Trees, validation and evaluation

Tue, Oct 10

Networks and Trees
Required Readings:
VAD Chapter 9-Arrange Networks and Trees

Fri, Oct 13
Validation and evaluation
Required Readings:
VAD Chapter 4-Analysis: Four Levels for Validation

[^0]: Be careful with colors in scatter plots!
 Be aware of color changes when adding borders around bars and plots!
 Be aware that colors in legends may appear different than on the plot!

