

Cody Dunne Northeastern University

TREES & NETWORKS

GOALS FOR TODAY

- Learn the definition of a network (including node, edge)
- Learn the definition of a tree
- Learn common visual encoding techniques for network data (i.e., node-link diagram, adjacency matrix), and the advantages of each one.

Networks

→ Geometry (Spatial)

→ Networks (graphs)

Network = entities and relationships between them

Tree = *undirected*, *connected*, *acyclic* network

Networks

- A network G consists of a set of nodes N and a set of edges E
- An edge $e_{n1,n2} \in E$ connects two nodes $n1, n2 \in N$
- E.g., $G = \{1,2,3,4\}, E = \{(1,2),(1,3), (2,3),(3,4),(4,1)\}$

Note all the same network, just different layouts!

Modified from slide by Frank van Ham⁶

A bunch of definitions

A directed graph

Modified from slide by Frank van Ham 7

Arrange Networks and Trees

Node-Link Diagrams

✓ NETWORKS ✓ TREES

Adjacency Matrix Derived Table

✓ NETWORKS ✓ TREES

Enclosure

Containment Marks

🗙 NETWORKS 🛛 🖌 TREES

"Treemap"

- Primary concern is the *spatial layout* of nodes and edges, a.k.a. *graph drawing*
- The goal is often to effectively depict the graph structure for *topology-based tasks*:
 - connectivity, path-following
 - network distance
 - clustering
 - ordering (e.g., hierarchy level)
- But not always topology-based tasks. E.g., understanding attributes, statistics, metrics

Slide based on Miriah Meyer, Frank van Ham⁹

An Extended Evaluation of the Readability of Tapered, Animated, and **Textured Directed-Edge Representations in Node-Link Graphs**

Jarke J. van Wijk[‡]

Danny Holten* Eindhoven University of Technology Petra Isenberg[†] INRIA

Figure 1: All directed-edge representations used in our initial (a to j), follow-up (b, k, l), and current study (b, l, m, n, o). (a) standard arrow - S, (b) tapered – T, (c) dark-to-light – DL (a.k.a intensity – I), (d) light-to-dark – LD, (e) green-to-red – GR, (f) curvature – C, (g) tapered-intensity – TI, (h) tapered-curvature – TC, (i) intensity-curvature – IC, (j) tapered-intensity-curvature – TIC, (k) biased curvature – Cb, (l) animated – A, (m) animated compressed – A_c , (n) glyph – G, and (o) glyph compressed – G_c .

Holten et al., 2011

Jean-Daniel Fekete[§]

Hall of Fame? Or Hall of Shame?

US presidential election network for 2012 primaries. 81k articles from 490 news outlets

Node-Link Diagrams

✓ NETWORKS
✓ TREES

Connection Marks

 (\rightarrow)

- Nodes: key entities from noun phrases. Sized by degree.

- Edges: relationships from verbs. Colored by positive (green) and negative (red) weights.

Gingrich Santorum: Romney

Sudhahar et al., 2015 13

orange and green links show negative and positive relations between entities.

Sudhahar et al., 2015

Dashboard of the **COVID-19 Virus** Outbreak in Singapore 2020-01-21 - 03-12

<u>Upcode, 2020</u>

Dashboard of the **COVID-19 Virus Outbreak in** Singapore 2020-01-21 - 03-12

<u>Upcode, 2020</u>

In-class exercise

Drawing a Node-Link Visualization

Nodes:

ID Type

Α

Edges: Source Target Weight

Drawing a Node-Link Visualization

Edge Properties		Vertex Properties	
1	7	1	
Weight	Color	Degree	S
1	7		
Weight	Width		

Nodes:

4	
ze	

ze	

- - - 4
 - 5

 - B

ID

1

2

3

Edges: Source Target Weight

2

- - 2
 - 3
 - 3

Type

Α

B

A

Α

- 4

Node-Link Visualizations

- understandable visual mapping
- can show overall structure, clusters, paths
- I flexible, many variations
- Cons:

Pros:

- automatic layout algorithm deficiencies
 - -time consuming to run
 - -non-deterministic results
 - -heuristics with sometimes poor results
- not good for dense graphs hairball problem!

Slide based on Miriah Meyer 20

Projection Transitions

Lagrange

Mackinlay, 1986

- Primary concern is the spatial layout of nodes and edges, a.k.a. graph drawing
- The goal is often to effectively depict the graph structure for *topology-based tasks*:
 - connectivity, path-following
 - network distance
 - clustering
 - ordering (e.g., hierarchy level)
- But not always topology-based tasks. E.g., understanding attributes, statistics, metrics

In-class activity: planarity https://treksit.com

~15 min

D3 Force-Directed Layout

Force-Directed Algorithms

<u>Kobourov, 2012</u> 30

	x
2	
	- 1
•	

Graph A

Algorithm Comparisons

Graph B

Hachul & Jünger, 2006

How to compare?

User performance, controlled experiments *Huang et al., 2007*, etc.

Simple rules or heuristics Davidson & Harel, 1996

Computational evaluations, Global and local readability metrics <u>Purchase et al., 2002</u> <u>Dunne et al., 2015</u>

<u>Sugiyama, 2002</u>, p. 14

Central placement of high degree vertices

Benchmark datasets

AT&T Biological Pathways (KEGG) Co-Phylogenetic Trees Complete Graphs World Maps Graphviz Examples KnownCR Militarized Interstate Disputes (MID) North DAGs RandDAG Rome-Lib Scotch Graph Collection SteinLib Storylines (Movie Plots) WebCompute

Established Network Repositories

Matrix Market

Network Repository

Pajek

SNAP (Stanford Network Analysis Platform)

SuiteSparse Matrix Collection

Aggregate collections

Airlines, Migrations, and Air Traffic

Assorted Collaboration Network

Blogposts, Tweets, and Forums

Code Dependency Graphs

Graph Layout Benchmark Datasets

The following is a list of benchmark datasets for testing graph layout algorithms. The list was collected at the Northeastern University Visualization Lab, and is maintained by the same. Our colleciton methodology targeted layout algorithms specifically - we do acknowledge the existence of other repositories that target other network-related purposes more in detail. The collection and supplemental material is also accessible at https://osf.io/j7ucv/

Click on the names of the collections to expand them and access information about their contents and a list of papers using them.

If you find our work useful for your research, consider citing our paper as well as the linked "Origin Paper" for each dataset used:

@Misc{DiBartolon	eo2023CollectionBe	nchma
author	= {Di~Bartolomeo,	Sara
howpublished	l = {Under submissi	on to
title	= {A collection o	f ben
year	= {2023},	
url	= {https://visdun	nerig
}		

Contributing: Please open an issue here: <u>https://github.com/VisDunneRight/gd_benchmark_sets</u>. Alternatively, reach out to dibartolomeo.sara@gmail.com

Benchmark datasets

These are collections of graphs that have been frequently used in graph drawing papers. By clicking on each collection name, you can see additional information. We also provide an analysis of the contents of each collection, and a list of papers that use them, their sources, and various types of information.

Name	Node Distr.	Min nodes	Max nodes	Features
<u>AT&T</u>	in the second se	₩ 10	100 ݣ	acyclic directed edges
Biological Pathways (KEGG)		₩ 47	292 ݣ	clusters directed edges large partition
Co-Phylogenetic Trees		₩ 13	773	trees
Complete Graphs		<u>W</u> 5	80	bipartite generic known crossing number
<u>World Maps</u>		₩ 48	<u>ک</u> ۃ 514	categorical nodes dynamic node weighted spatial

arkDatasets,

and Puerta, Eduardo and Wilson, Connor and Crnovrsanin, Tarik and Du o Graph Drawing Posters},

nchmark datasets for evaluating graph layout algorithms},

ght.github.io/gd benchmark sets/},

Di Bartolomeo et al., 2023

Rooted trees / layered graph drawing

Back-and-Forth Sweeps

Median Heuristic

- Quickly run out of space!
- Tree breadth often grows exponentially
- Layout algorithms are slow and heuristics
- Slow rendering
- Solutions:
- scrolling or panning
- filtering or zooming
- aggregation & simplification
- faster but tricker rendering approaches

Scale Problems...

Slide based on Miriah Meyer 39

http://www.yasiv.com/graphs#HB/blckhole

Arrange Networks and Trees

Node-Link Diagrams

✓ NETWORKS ✓ TREES

Adjacency Matrix Derived Table

✓ NETWORKS ✓ TREES

Enclosure

Containment Marks

🗙 NETWORKS 🖌 TREES

"Treemap"

Alternate to node-link visualization for dense & weighted networks

Slide based on Miriah Meyer 42

Adjacency Matrix

<u>Henry & Fekete (2006)</u> 43

Pros:

- great for dense graphs
- visually scalable
- can spot clusters

Cons:

- row order affects what you can see
- abstract visualization
- hard to follow paths

Slide by Miriah Meyer 44

Source: The Stanford GraphBase.

https://bost.ocks.org/mike/miserables/

Previous Class

WDA-LS clustered co-occurrence

Use the drop-down menu to reorder the matrix and explore the data.

When ordered by cluster, rows and columns are clustered by affinity values using hierarchical agglomerative clustering. Distance measure: Euclidean. Linkage technique: Single.

Rows and columns are then arranged using leaf reordering using the algorithm from: Sakai, Ryo, et al. "Dendsort: modular leaf ordering methods for dendrogram representations in R." F1000Research 3 (2014).

Cell labels show count and color shows normalized affinity.

Cody Dunne and Tim Stutts, IBM Watson Health Cognitive Visualization Lab

Dataset: genes/genes Medline (example)

Edge List

Order: by Cluster •

The query was for genes related to the genes SOX9, TCF7L1, SMAD4, PIK3CA, KRAS in Medline.

	SOX9	TCF7L	SMAD ²	KRAS	PIK3C/
tp53	33	4	406	1295	726
apc	10	1	106	255	91
kras	10	1	166	11277	926
nras	0	0	20	878	269
hras	0	0	9	659	107
f2	2	0	5	407	0
raf1	3	1	12	760	266
alk	0	0	11	339	126
ns2	0	0	0	228	0
sos1	0	0	0	286	8
hspb3	0	0	4	279	9
ptpn11	0	0	6	192	21
cd8a	4	0	7	190	25
cd4	0	0	11	152	34
ifng	0	0	14	118	12
myc	18	1	50	278	80
mlh1	0	1	34	190	50
smad4	13	1	3052	166	53
smad2	21	1	828	12	12
smad3	20	0	658	6	12
smad7	5	0	281	0	0
smad1	17	0	262	0	6
tgfb1	23	0	230	16	7
inhbe	12	0	164	0	0
tgfbr2	5	0	123	22	6
cdkn2a	13	0	222	330	150

HiGlass 🔀

HiGlass is a tool for exploring genomic contact matrices and tracks. Please take a look at the <u>examples</u> and <u>documentation</u> for a description of the ways that it can be configured to explore and compare contact matrices. To load private data, HiGlass can be <u>run locally within a Docker container</u>. The HiC data in the examples below is from Rao et al. (2014) [2].

A preprint of the paper describing HiGlass is available on bioRxiv [1].

Single View

MatLink

(a) Node-Link(NL)

(b) Matrix(MAT)

(d) Zoom on MatLink

NodeTrix

Henry et al, 2007

MapTrix

(a) Bundled Flow Map

(b) OD Map

https://vimeo.com/182970812 https://vimeo.com/278433529 (c) MapTrix

Yang et al., 2016; Demo

→ Networks (graphs)

Network = entities and relationships between them

Tree = *undirected*, *connected*, *acyclic* network

Arrange Networks and Trees

Node-Link Diagrams

✓ NETWORKS ✓ TREES

Adjacency Matrix Derived Table

✓ NETWORKS ✓ TREES

Enclosure

Containment Marks

🗙 NETWORKS 🛛 🖌 TREES

"Treemap"

(22)

Hyperbolic trees

https://glouwa.github.io/d3-hypertree-examples/demo/

Cone Trees

<u>Robertson et al., 1991</u> 54

PRO BASKETBALL ANALYZER

Slice and Dice Treemaps

Turo & Shneiderman, 1993 55

Cluster / Squarified Treemaps

finviz											S&P 500	 1 DAY PER 	FORMAN	CE 🔹 Thu M.	AR 19 2020	9:57 AM EST
TECHNOLOGY			ADDUCATION	SOETWARE	SEMICONDUCTOR	PROADI	SERVICES	DISO			BASIC MA		CIAITYC	INDEDENDE		
			ADBE -3.94%	CRM -0.79%		VGO -0.67%			WMT +2.46%	DIS -3.83%	XO -1.9	5%	LIN -5.06% CL PPG -3.87	COP -4.01% -6.86 EOG +2.65%	MPC	SLB -0.83% HAL
GOOG -2.96%	SL 6	FB 1.05%	ORCL -2.37%	INTU -5.79%	-3.63% AM -3.06		+0.53%	CC -0.1	DST 79% DG	CMCSA -2.19%	CV HEALTHC	X SH -2: ARE	IW 14% IFF	CHEMICALS APD Dow -3.01% -1.51 MEDICAL AF		CF -9.45
BUSINESS SOFTWARE		R VRSN	ACN +4.26%	IBM -4.82%	CSCO -0.97% LHX MSI	NVDA -4.23%	BUSINESS SERVICES CATV SYS FISV BKNG -4.61% -5.28% NFLX	TEMS CHTR -1.00%	-1.36% AIR DELIVE F UPS -1.15 -0.11%	RESORTS & SPECIAL LVS RCL 8.81% MGM -4.43%	٦L	1]	MRK -1.42%	MDT -0.29%	ABT -0.70%	SYK BSX 2.65% -6.02%
BOSINESSSOFTWARE			FIS -5.: -4.40% CT TELECOM SEF	SH IT	EMICONDU SEMICON AMAT LRCX -3.06 SCIENTIEL		SPGI MCO INFO +1.63% -3.07% -4.09% -4.23 RAILROAD GPN CTAS VRSK RAILROAD	DISH DISH CSX	LODGIN MAJO MAR DAL	CCL DRUGS APPAR UAL MCK ROST AAL ABC	DEE	BMY -3.23%		BIOTECHNC AMGN -0.79%	GILD +2.92%	ALDICALINS BDX ISRG -2.06% -6.62%
M -0.	ISF I .79%		т	VZ -1.97%	ATVI EA 2.61% TTWO -1.95%	+0.73%	HOME IMPROVEMEN HDR IMPROVEMEN HD LOW	NSC -3.51%	TJX -4.53% DRU	GWW	-4.29%	LLY E PLANS	ABBV -6.07%	VRTX -2.09% BIIB -3.06%	LMN REGN 3.66 -2.59	BAX RMD -3.06% -6.09
FINANCIAL MONEY CENTER BAN	IKS		PROPERTY &		CCI -4.87% HPQ SSET MANAGEMEN RE	NLSN EIT - DIVER	-8.59% -0.08 MC -5.85 CONSUMER GOODS ELECTRONIC EQUIPMENT	D -4.58% % PERSONAL PR	ORLY REGI AZO LUV ODUCTS BE	BBY TIF BKR KR VERAGES - SOFT DR	UNH -2.75%	CVS -0.77% CI	ANTM -3.69% HUM -2.83%	MEDICAL LA TMO -4.54%	BOR DRUG	SS- HOSPI S HCA +0.54%
IPM	BAC -6.88%	С	BR	K-B	BLK 5.47% BEN -2.97 -4.18 BEN -2.97 BEN -3.44	AMT -0.13	ř	PG	EL	KO -3.49%	INDUSTRI DIVERSIFIED	-3.02% AL GOODS MACHINERY		L CE/DEFENSE	PKI -2.3E	% S JTILITIES
-6.13%	WFC	PNC	-3.4	I4%	NSURANCE REGIONAL MMC AON -4.67 USB -4.65%	REIT - IN PLD -2.85%		FG	CL - KMB -0.63%	5.57% MNST	HON -3.43%	DHR -2.91%	BA -9.779	UTX 6 -8.84%	NEE -3.229 SO	DUK -4.23%
CREDIT SERVICES	-5.12%	PYPL	PGR 4 -3.60% -5 AIG T	ILL HIG L 81% L N	MLTW AJG FITB KEY IFE INS REIT - RESID MET PRU 514 - 6.58	PSA -0.68% DRE REGIONAL TFC -4.58%	AAPL -1.53%		GIS +0.17 K	AUTO MA BEVERA GM F STZ BF-B -7.92% F -5.26 -1.39 TEXTIL JCI	GE -5.64%	-6.78% -9.72% ROP -2.04 AME XYL	5 LMT -5.82%	RTN GD -7.82% -5.92	-4.83% XEL ED -2.22	ETR PPL DTE CMS
V	MA	-4.20% COF -9.53% AXP 5.04% DFS SYF EFX	-6.0795 -4 INVESTMEN MS GS	98% WRB BROKERA CME -6.38% SCHW -6.03%	FG GL DIVERSIFI A EIT - R -5.02% AI SPG O REIT - HE M VTR PEAK CI	AFL DLR 1.16% BXP TB NT		MO TEXTILE - AP NKE -4.91%	PACKAGIN	VFC HRL -7.41 HRL AVY CLX TAP	-2.23% FARM & CAT -2.11% DE	IR -1.51 DOV AEROS NOC -3.08% RESIDE RSG DHI	RAC INDU C EM	TDG JST INDUST R ERA wy	VIEC -1.20 FE DIVERSIFIE EXC SRE	AEE DU GASU ES I I I I I I I I I I I I I I I I I I I

<u>Wattenberg, 1999;</u> <u>Bruls et al., 2000</u>; <u>finviz live site</u>; Snapshot: <u>finviz, 2020</u>

Shneiderman et al., 2011

2005

2007

CT

2005

TM

MT

2007

Rainbow: 3D: 39% 2D: 62%

How many diseased regions found?

Diverging: 3D: 71% (Δ +31%) 2D: 91% (Δ +29%)

Borkin et al., 2011

Pandey et al. VIS 2019

visual complexity

Search the VC database:

Latest Projects:

1888 C	221	4.8	1
2018	1023	20	2
	Acres 14	*1ex.04	

Hart Manual & C

GO

Deep Learning GPU Servers Deep Learning Systems w/ TitanX/ K80/K40 GPUs.

Intel® Xeon®. Go to amax.com/DeepLearning

For Next Time

neu-ds-4200-f23.github.io/schedule/

Look at the upcoming assignments and deadlines

- Textbook, Readings, & Reading Quizzes—Variable days
- In-Class Activities—If due, they are due 11:59pm the same day as class

Everyday Required Supplies:

- 5+ colors of pen or marker
- White paper
- Laptop and charger

Use Slack for general questions, email <u>codydunne-and-</u> <u>tas@ccs.neu.edu</u> for questions specific to you.

Week 6: Networks and 1	rees; Spatial, 3D, and SciVis			
Tue, Oct 10 <i>Networks and Trees</i> Required Readings: 1 VAD Chapter 9—Arrange Networks and Trees	 Fri, Oct 13 Spatial, 3D, and scientific visualization Required Readings: 1 VAD Chapter 8—Arrange Spatial Data A5—Altair interactive charts due at 11:59pm 			
Week 7	: Midterm			
Tue, Oct 17 Midterm Q&A and Study Session	Fri, Oct 20 MIDTERM EXAM			
Week 8: Story	telling, Validation			
 Tue, Oct 24 Storytelling, how to give a talk Required Readings: 1 Storytelling: The Next Step for Visualization by Robert Kosara and Jock Mackinlay (2013) 	Fri, Oct 27 <i>Validation and evaluation</i> Required Readings: 1 VAD Chapter 4—Analysis: Four Levels for V			
	A6			

